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AERONAUTIC SYMBOLS 

1. FU-NDAMENTAL AND DERIVED UNITS 

Metric English 
I 

Unit Abbrevia- 
tion Unit Abbreviation 

, 

meter- _ __ _ _ _ __ _ _ _ _ __ _ __ m  foot (or mile) _ -~-..-I--- ft (or mi) 
second _____ ------A---:- second (or hour) _______ set (or hr) 
weight,.of 1 kilogram----- ksg weight of 1 pound----- lb 

horsepower (metric) -. - _ - _ _ _ _ k.h _ L _ horsepower _ - _ - - - _ _ _ _ _ hp 
[kilometers per hour ------ mdes per hour-------- mph 
(meters per second- _ ___-_ mps feet per second ________ fps 

-- 

2. GENERAL SYMBOLS 

Weight=mg 
Standard acceleration 
!. or 32.1740 ftjsec2 
.- - w 
:Mass-~ 

‘. v Kinematic viscosity 
of gravity=9.80665 m/s2 p Density. (mass per unit volume) 

. Standard density of dry air,. 0.12497 kg-mB4-s2.at 15O C 
and 760 mm; or 0.002378. Ib-ftm4 sec2 

Specific weight of 
IMoment - of inertia=mF. (Irudicate axis of ’ 0.07651 lb/w ft 

“standard” air, 1.2255 kg/m3 or 

: radius of gyration k .by proper subscript.) 
,Coefficientofviscosity ,,i 

3. AERODYNAMIC SYMBOLS 

Area 
Area of wing 
iGap .- 
Span 
Chord I’ 

.Aspect ratio, g 
iTrue. air speed 

‘Dynamic pressure, k pV2 

Lift, absolute coefficient C’&=j$. 

fDrag, absolute coefficient G,=$ 

:Profile drag, absolute coefficient CDO=$$ 

. 

_.. 

a 
e 
cro 
af 

iInduced drag, absolute coefficient Qf=$$ ffa 

-!Parasite drag, absolute coefficient &=fg 7 
I 

:Cross-wind force, absolute coefficient C$=$ 

: ,. _.. 
:.t ..-: 

Angle of setting of wings (relative to thrust line) 
Angle of stabilizer setting (relative to thrust 

line) /’ 
Resultant moment 
Resultant angular velocity 

Reynolds number, p % where 1 is a linear dimen- 

sion (e.g., for an airfoil of 1.0 ft chord, 100 
mph, standard pressure at ‘15’ C, the corre- 
sponding Reynolds number is 935,400; or for 
.an airfoil of 1.0-m chord, 160 mps, the corre- 
sponding Reynolds number is 6,865,OOO) 

Angle of attack 
Angle of downwash 
Angle of attack, in&rite aspect ratio 
Angle of attack, induced 
Angle of attack, absolute (measured from zero- 

lift position) 
Flight-path angle 

...._ 

_:._ ___. ,C.’ ,’ 
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INTERFERENCE METHOD FOR OBTAINING THE POTENTIAL FLOW PAST AN 
ARBITRARY CASCADE OF AIRFOILS - 

By S. KATZOFF, ROBERT S. FINN, and JAMES C. LAURENCE 

SUMMARY 

A procedure is presented for obtaining the pressure distribu- 
tion on an arbitrary airfoil section in cascade in a two- 
dimensional, incompressible, and nonviscous$ow. The method 
considers directly the in$uence on a given airfoil of the rest of 
the cascade and evaluates this interference by an iterative process, 
which appeared to converge rapidly in the cases tried (about unit 
solidity, stagger angles of 0” and 45”). Two variations of the 
basic interference calculations are described. One, which is 
accurate enough for most purposes, involves the substitution of 
sources, sinks, and vortices for the interfering airfoils; the other, 
which may be desirable for theJina1 approximation, involves a 
contour integration. The computations are simplijied by the 
use of a chart presented by Betz in a related paper. The numer- 
ical labor involved, while considerable, is less than that required 
by the present methods of conformal transformation. Illus- 
trative examples are included. 

INTRODUCTION 

The rapid increase of interest in the design of fans and 
turbines has led to many studies of the two-dimensional flow 
past infinite lattices. Most of these studies involve approsi- 
mate procedures (for example, refcrcnccs 1 to 3) or prcscnt 
solutions for special classes of shapes (refcrcnccs 4 and 5). 
Recently, attempts have been made to obtain exact solutions 
by conformal transformation of the lattice to a circle. To 
this end, Howell (reference 6) used a procedure that first 
transformed the lattice to an isolated S-shape figure, which 
could then be transformed to a near-circle by successive 
Joukowski transformations and finally to a circle by the 
method of reference 7. In reference 8 the cascade was 
transformed first to a near-circle and then to a circle, also 
with the use of several stages of conformal mapping. In 
reference 9 the lattice was mapped into a lattice of straight 
parallel lines by means of a function that was determined 
with the aid of the transformation of this line lattice to a 
circle. (See references 10 and 11.) These transformations 
are of considerable interest, theoretically. The methods of 
references 6 and 8 require lengthy computations, however, 
and difficulty has been experienced in obtaining accurate 
numerical results with the method of reference 9. All three 
methods require modifications for highly cambered contours 
or for lattices of high stagger and solidity. 

The method presented herein does not seek a conformal 
transformation directly but, like the older approximate 
methods, seeks to evaluate the interference at each airfoil 
due to the presence of all the other airfoils of the cascade,. 

I.- -- 

The velocity distribution on each airfoil is considered to be 
the sum of that corresponding to its presence in the uniform 
free-stream flow plus that corresponding to its presence in 
the interference flow. The interference is calculated from 
the velocity distribution on the airfoils so that the method 
reduces to an iteration process in which, for the first approxi- 
mation, the interference is computed by assuming the free- 
stream velocity distribution to exist on each airfoil, and in 
subsequent approximations this velocity is corrected accord- 
ing to the interference derived in the preceding approxi- 
mation. A solution is thus found for an arbitrarily specified 
angle of attack, and this solution is used to find the conforms1 
transformation to the circle and thence the solution for any 
other angle of attack. 

The present method has been found appreciably less 
laborious than the methods that seek the conformal trans- 
formation directly and is also considered more flexible in 
that it may be adapted to a variety of cascade problems that 
would be difficult to solve by formal transformation methods; 
for example, the problem of the flow about double cascades 
(or superimposed lattices) or certain types of ‘Linverse” 
problems involving the determination of the setting or 
solidity for a given airfoil in cascade. Some of the features 
of the intcrfcrcncc and iteration methods used should also 
bc useful in the solution of flows involving a finite number of 
interfering bodies. 
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SYMBOLS 

flow function (complex potential) 
velocity potential 
stream function 
velocity at infinity 
circulation 
mapping-function parameter 
local velocity 
vortex strength 
source strength 
complex variable of physical plane (s+iy) 
fixed point in physical plane 
complex variable of reference plane (t+iq) 
profile chord 
profile chord used in transformation of reference 7 
cascade spacing (distance between corresponding 

points on adjacent blades; see fig. 1) 
central angle of perfect circle obtained in trans- 

formation of reference 7 
central angle of unit circle of figure 1 
surface length on profile 
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FIGURE I.-Flow singularities in circle plane and corresponding velocity 
in physical plane. 

vectors 

blade angle (angle between stagger line and normal 
to chords; see fig. 1) 

solidity (ratio of chord to distance between profiles) 
angle between flow direction and normal to stagger 

line 
angle of attack relative to blade chord 
angle of zero lift for cascade, relative to blade chord 
static pressure rise 
turning angle of flow 
density of fluid 

a,,, b, Fourier series coefficients 
Subscripts: 
f free stream 
d disturbance 
G compensating 
I? due to circulation change 
a additional 
T total 

t tail stagnation point 
n nose stagnation point 
TE trailing edge 

S due to source rows 
V due to vortex rows 

T 
physical plane 
reference plane 

0 mean flow 
1 incoming flow 
2 outgoing flow 
X0 at flow direction X0 
X0’ at flow direction X0’ 

THEORY OF INTERFERENCE CALCULATIONS 

In order to explain better the basic concepts and pro- 
cedures of the interference calculations, discussion of the 
iteration steps will be postponed for the present, and the 
interference calculations will be described as if they were 
being used to verify a known solution. 

Breakdown of the flow function into four components.- 
Attention is fixed on one airfoil of the infinite cascade which 
will be designated t.he central airfoil. The flow function on 
the boundary of this airfoil is considered to be the sum of 
the following components: 

W, the flow function for the central airfoil, considered as 
isolated in the free-stream flow (the vector average 
of the flow far in front of the cascade and the flow 
far behind the cascade). Inasmuch as the boundary 
is a streamline in this flow, Wf=@P 

Wd the disturbance along the contour caused by the pres- 
ence of all the other airfoils of t,he cascade, designated 
the external airfoils (W,=+,+~?P~). 

WC the compensating flow function (which may have 
singularities only within the central airfoil) that is 
required to maintain the airfoil a streamline in the 
presence of the disturbance flow. It is determined 
by the condition that, on the boundary, its stream 
function must be equal and opposite to the disturb- 
ance stream function. Thus, Wc=Gc+iKP-,, where 
iP,= - \k& 

Wr the contribution of the circulation that must be added 
to maintain the trailing-edge condition; it has only a 
real component ( Wr = a~). 

The sum W,+ WC+ Wr represents the net change of flow 
function due to the presence of the external airfoils; it will be 
designated the additional flow function W,=+=. The sum 
W,+ W, will be designated the total flow function WT=% 

The evaluation of the isolated, or free-stream, flow +, is 
readily performed by the method of reference 7 and requires 
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no further discussion in the present paper. The disturbance 
flow can be calculated when the potential distribution (or 
velocity distribution) on the external airfoils is known. 
Finally, the compensating flow and the circulation flow are 
readily determined, as will be shown, when the disturbance 
flow is known. In the following sections two methods of 
calculating the disturbance flow will be described: the 
approximate ‘source-vortex method and the exact contour- 
integral method. 

Disturbance flow by approximate source-vortex method.- 
Each of the external airfoils is considered to be adequately 
represented by an arrangement of about two sources, three 
sinks (or negative sources), and five vortices distributed along 
its mean line. The strengths and locations of these singulari- 
ties are chosen on the basis of the chordwise thickness dis- 
tribution and chordwise velocity distribution. The choice is 
somewhat arbitrary and may be left to the judgment of the 
worker; however, a detailed method of choice has been 
described in the section entitled “Computational Methods.” 
The disturbance flow, then, is that of about ten infinite rows 
of singularities, equally spaced along the cascade direction 
except that none are located where the central airfoil is to be 
placed. The field of each vortex row is shown in figure 2 
where, for convenience, the vort.ices are assumed to be of 
unit strength, spaced at unit distance along the v-axis. 
This figure is from reference 1 and the equation for the flow 
is (reference 2) 

W= - 2 log, sinh ?rz + & log, BZ 

In order to find the contribution to the disturbance flow 
caused by a row of vortices at, say, 0.3 chord on the external 
airfoils, the central airfoil, drawn to scale and properly 
oriented relative to the cascade direction, is placed at the 
center of figure 2, with the origin at 0.3 chord on the mean 
line. The values of velocity potential and stream function 
read at selected points along the airfoil contour, multiplied 
by the assumed vortex strength, give directly the contribu- 
tion of this vortex row to @d and qkd. By shifting the central 
airfoil so that the origin is located, in turn, at each of the 
other assumed vortex positions along the mean line and 
repeating the foregoing process, the contributions of all the 
vortices in the external airfoils are obtained at the same 
points. The sum of these values at a given point on the 
central airfoil represents the contribution of the vortices in 
the lattice to the disturbance function W, at that point. 
The contributions of the sources can be found in the same 
way except that the lines marked \k are considered as -a 
and the lines marked @ are considered as q. SiIlkS are 
considered as negative sources. 

Contour-integral method for evaluating disturbance flow 
function.-In the preceding section, the disturbance field 
was calculated approximately by representing each airfoil by 
a somewhat arbitrary arrangement of vortices, sources, and 
sinks distributed on the mean line. An airfoil may be 
represented exactly by a continuous distribution of vortices 
along its contour, the linear density of which at every point 
equals the velocity on the airfoil at that point (reference 12). 
The’field at a point on the central airfoil due to a row of 

corresponding surface elements of the external airfoils (that 
is, a row of vortices of strength VT ds) may be obtained 
directly from figure 2. Integration of this contribution 
along the contours of the external airfoils provides an exact 
determination of the disturbance field. The procedure is an 
obvious modification of the preceding approximate method. 

Let 9 and P (without subscripts) denote, respectively, the 
potential and stream function of the row of unit vortices in 
figure 2. In order to determine the disturbance potential 
and stream function at a point z’ on the central airfoil, the 
airfoil contour, drawn to scale and correctly oriented relative 
to the cascade direction, is superimposed on figure 2 so that 
the origin falls, in turn, at a number of points z on the con- 
tour, and for each setting values of Q, and q are read at the 
point 2’. Then the disturbance flow function at z’ is given 
by 

+&‘)= *T(z) ds S c 

IP~(z’)= S PV&) ds e 
where 
VT(z) local velocity on the airfoil at variable point z 
s distance along airfoil contour 
a’, P values read at z’ when origin of figure 2 is at z 
and the integration is performed along the airfoil contour. 
Since z+(z) ds=d@,(z), the foregoing equations can be re- 
written as 

a&‘) = S + d&(Z) c 

so that the disturbance potential and stream function at ’ 
point z’ are readily evaluated by plotting + and 9 against 
+T and measuring the area under the curves. 

Determination of compensating flow and circulation 
flow.-As has been indicated, the compensating flow func- 
tion may have singularities only within the central airfoil 
contour, and on t,he contour, the stream function must be 
exactly equal and opposite to the disturbance stream func- 
tion. From the known transformation of the isolated airfoil 
to the circle, which was found in t.he process of determining 
IV,, the correspondence between points on the airfoil and 
points on the circle is known. If, then, the desired com- 
pensating stream function is expanded as a Fourier series 
in terms of the circle angle p, 

*-,=k (an cos np+ b, sin nq) 
n=l 

its corresponding velocity potential will be (reference 7) the 
conjugate series 

m 
cp,=r, (4, cos ncpfa, sin np) 

n=1 

The determination of ap, from 9, is readily accomplished by 
the method of reference 13. 



4 REPORT NO. 879-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

-- r-m- /II II: 

%6 
I--- , I \ ILL!\ ii 

-1.6 -1.2 -.8 -.4 0 .4 .8 /.2 I.6 

F~GTJRE Z.-Velocity potential and stream function for a row ol vortices of unit strength sgaccd at unit distance along the g-axis n-ith the central vortex omitted. 
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In order to maintain the trailing-edge condition, a vortex 
pa must be added at the center of the circle of such strength 
that pa/2?r equals the value of -d@,/dp at the trailing edge 
(determined numerically or graphically from a faired plot 
of 9, against p). The corresponding contribution to the 
potential is 

The velocity potential +a=%6+@c++r that constitutes 
the net effect of putting the airfoil in the cascade (that is, 
the net interference effect) may now be determined by simple 
addition of the three components. Presumably, since the 
calculations were made with the correct @T, aa should be the 
difference between @‘/ and @T. 

whence 

rT=r,+rD.+$ ra, 

r,+ ra, 
rT=- 

l-J& 
(1) 

In the final step, a, is differentiated mith respect to dis- 
tance along the airfoil to get the corresponding interference 
effect va on the velocity, which should be the difference be- 
tween v, and VT. Convenient procedures for performing 
these calculations are discussed in the section entitled ‘YJom- 
putational Methods.” 

Since the assumptions are not exactly true, t,he value of 
pT so calculated is correspondingly inexact; however, it is 
much closer to the true value than if it were taken simply 
as r,+ ras+ rao. Correspondingly, the potential 

@?,.=@,+Q,+$if +‘a0 

is much more accurate than the sum +,+@,s+@,,v. 

ITERATION METHOD 

In the preceding sections the basic concepts and procedures 
of cascade interference calculations have been outlined. In 
the present section, the application of such calculations in 
the proposed iteration method of solving cascade flow will 
be discussed. 

The second approximation is similarly adjusted. Thus, 
corresponding to the +T distribution just obtained, a new 
set of sources, sinks, and vortices are distributed along the 
mean line, and new values of pa, and pa, are calculated. 
Adjustment follows, as before, from the equation 

As first attempted, the method was essentially as follows: 
In the first step, @T is assumed to equal a, and a first approxi- 
mation to @‘a is calculated on this basis by the methods just 
described. In the second step, @.T is assumed equal to the 
sum of @‘/ and this first approximation to ap,, and a second 
approximation to %‘a is computed. The succeeding steps 
follow the same pattern and are continued until two succes- 
sive +.a distributions are essentially the same. The source- 
vortex method was used for the earlier approximations, but 
the final approximation, when convergence is practically 
complete, was made by the contour-integral method. This 
procedure, however, was found to converge relatively slowly 
in some cases, and the general practicability of the interfer- 
ence method depends on a slight modification of the source- 
vortex method. 

where the subscripts 1 and 2 refer to the first and second 
approximations, respectively. Solving for rTz gives 

r,+ ra, rT,=- * 
l+Ti 

(2) 

Tl 

and, finally, the potential is given by 

The modification depends upon the observations that the 
contribution of the sources and sinks to @‘a changes by rel- 
atively little from one approximation to the next and that 
the contribution of the vortices to @, is nearly proportional 
to their total strength and relatively independent of their 
distribution. Obviously, if it were exactly true that the 
contribution of the sources and sinks is constant and that 
the contribution of the vortices is proportional to their total 
strength, only one interference calculation would be required 
and the solution could then be obtained through a simple 
algebraic equation. Thus, let 

This simple modification of the procedure is so effective 
that, in the cases tried, the first step gave solutions that 
would be satisfactory for many purposes and the procedure 
had practically converged at the second step. The addi- 
tional complication of keeping the source-sink and the 
vortex effects separate so that ras and I’=, can be separately 
computed is relatively minor and amply repaid by the 
rapidity of convergence. 

After the source-vortex method has essentially converged, 
a final approximation by the contour-integral method may 
be desirable. In the cases computed, however, this final 
step was found to introduce only minor changes in the result. 

THE FLOW AT OTHER ANGLES OF ATTACK 

pT total circulation on airfoil in cascade From a known velocity distribution at a given angle of 
I?, total circulation on isolated airfoil at same angle of attack attack, the angle of zero lift and the slope of the lift curve, 
r. additional circulation (p,-p,) together with the velocity distribution at any other angle r (28 constant contribution of sources and sinks to pa of attac.k, may be obtained. For this purpose, the lattice 

r a, contribution of vortices to pa when rf is assumed on all 
external airfoils 

Then, by the preceding assumptions, 
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is conveniently considered to be related con-formally to an 
isolated circle by a periodic transformation, which might 
be, say, of the type used in reference 6, 8, or 9. The explicit 
form of the transformation, however, is not needed for the 
present purpose. 

The flow function in the circle (p) plane that corresponds 
to the desired flow in the physical (z) plane is 

W= -2 
( 

e-ixOlog, t--eK lfeK+etAo log, Ez)-g log, iGK 

(3) 

In the l-plane this flow may be interpreted as that due to 
the system of sources, sinks, and vortices shown in figure 1. 
The unit circle {=eis is a streamline of the flow and the 
circulation about any contour enclosing this circle but not 
enclosing the points {= fe” is r (positive clockwise). 

In the physical (z) plane, the complex velocities at the 
points z= m and z= - ~0 are determined by equation (3) and 
the transformation. Thus, 

dT% 
(--I 

r 
dz m= 

- Voe-iaO+ i - eta= - V,e-iel 
2d 

and 

r - Voe-h- i - eV= - V2e-iW 
2d 

where the angles and velocities are defined in figure 1. The 
flow far from the lattice is seen to be the same as that of an 
infinite vortex row in the uniform flow - V,,eeiao. It should 
be noted (fig. 1) that &,=c\I,,+P, X1=al+/3, and x,=cu,+~. 
In the following paragraphs it will be shown how to obtain 
from the given solution in cascade the parameter K and the 
stagnation points 0, and 19~ for the corresponding flow about 
the circle. These values fix the angle of zero lift and the 
slope of the lift curve of the airfoil in cascade; together with 
the known potential distribution they determine the con- 
formal correspondence between the profile and the circle 
and, hence, the velocity distribution at any angle of attack. 

Since the airfoil contour (z-plane) is conformally related 
to the unit circle (l-plane), it follows that at any given angle 
of attack a0 the change of velocity potent,ial from nose to 
tail stagnation point on both upper and lower surfaces must 
be the same for the circle and for the profile in cascade. 
These potential changes can readily be obtained for the 
single solution on the lattice from the final C+ distribution. 

The velocity potential on the unit circle is obtained from 
equation (3). Thus, 

$;= +[cos x0 lo&(:$ ,“?,cz; i)+ 

2 sin X0 tan-’ s.h K sin+L tan-1 SK] Vad (4) 

and the change of potential from nose stagnation point 8, to 
tail stagnation point Bc is 

A% 1 -Ga cos x0 log, 
i C 

(cash K-cos et) (cash K+cos e,J 
CVO (cash K+COS e,)(cosh K-cos e,) 1 + 

2 sin X0 tan-’ 
[ 

(sin en-sin et) sinh 
-&I~ ?I en sin et + 

gd tan-’ (tan &-tan 0,) tanh K 
tanh2K+tan en tan et 11 (5) 

This potential change may be obtained for either the upper 
or the lower surface. Two values are obtained depending 
on the choice of quadrant for the third term of equation (5). 
The condition of zero velocity at nose and tail stagnation 
points is 

sin 9 cos X0-cos 0 tanh K sin x0-- Gd sinh K=O (6) 
0 

By use of the known values of r, A&, and X0, equations (5) 
and (6) can be solved simultaneously for B,, 8,, and K. 
Equation (6) can be considered as a quadratic in sin 0 and 
with an assumed value of K determines corresponding values 
of en and et. Equation (5) then determines A@r. By the 
proper choice of values of K, a curve of A@r against K may 
be plotted such that at a point on this curve A%{=A&. 
The value of K at this point is the desired value; the corre- 
sponding values of en and eL are then given by equation (6). 
A convenient initial choice for K is the value that corresponds 
to a lattice of straight lines of the same stagger and of about 
10 percent or 20 percent higher solidity. Figure 3 is of aid 
in this respect. The computed values of K and et, together 
with equation (6), determine the angle of zero lift (r=o) 
with respect to the airfoil chord, thus 

tan et ___- vEtan-’ tanh K 0 (7) 

and the slope of the lift curve, based on mean velocity, is 
obtained by differentiating equation (6) with respect to x0; 
thus. 

de, 4 dsin2 e,+sinh2 K 
da, g sinh K cash K 

A correspondence between points on the airfoil and points on the unit circle may be obtained by comparing the values 
of Qjr computed by equation (4) with the values of @‘r from the known potential distribution. The points (z,y) on the 
profile and 0 on the circle for which @Y=& are corresponding points. The velocity on the lattice profile for the stream 
angle X0 is 

cos X0 cash K (sin e-sin et) -sin X0 sinh K (cos 0-cos 0,) 
cosh2 K- cos2 0 1 

I 
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where the term in brackets, which represents the velocity on the circle boundary, is obtained by differentiating equa- 
tion (4). It follows that the velocity corresponding to a new stream angle X0’ is 

cos X0’ cash K (sin e-sin e,) -sin X0’ sinh K (cos 8-60s e,) 
cos X0 cash K (sin e-sin 0,)-sin X0 sinh K (cos e--OS eJ 1 (9) 

\ \ \ 

30 45 60 
Bode angle, 0, deg 

75 90 

FIGURE 3.-Relation between solidity, blade an&, and parameter Klor an infinite latticr of 
flat plates. 

The following relations, which describe the flow far away 
from the lattice, are of interest. The stream angles X1 and 
x2 at 2=m and z=- ~0 are 

r 

X1 = tan-’ 
sin hO+ZV,d 

cos x0 
and 

r 

X2= tan-’ 
sin Xo--xd 

cos x0 

and the angle through which the fluid is turned by the lat- 
tice is given by 

Jl cos X0 
w=tan-’ Kd 

r 2 

‘- 2Vod (-) 
The rise in static pressure across the lattice is 

=cos2 X0 (set” X1-sec2 X2) 

REMARKS ON CONTOUR MODIFICATIONS CORRESPONDING 
TO LOCAL PRESSURE CHANGES 

In reference 14, the modification of an airfoil contour to 
obtain, approximately, dcsircd small changes in the pressure 
distribution is discussed. The method, based on the for- 
mulas of rrfercncc 7, evaluates a slight modification of the 
conformal transformation of tlic circle to the airfoil, such that 
the stretching factor at cvcry point is changed in proportion 
to the dcsirctl rclativc cliangc in local velocity. 

Although in rcfcrrncc 14 the airfoil was assumctl to lit in 
a straight uniform ficltl, the treatment, is equally applicable 
when the airfoil is in a curved or distorted flow field. Accorcl- 
ingly, the procedure sl~oultl be applicable to airfoils in cascade, 
provided the same modification of the cstcrnal airfoils Icaves 
the disturbnncc flow field essentially unnffectctl. This 
condition may not always be satisfied; bowevcr, in such 
cases the method could possibly bc improved by a procedure 
analogous to that dcscribccl in tbc section of the prcseut 
paper cutitlrd “Iteration Method.” 

COMPUTATIONAL METHODS 

The basic theory has been presented. In the following 
sections some of the methods used for performing the actual 
computations will be discussed. 

Selection of points for evaluation of disturbance flow.- 
The determination of the compensating flow by the method 
of reference 13 requires that the disturbance flow be evaluated 
at points that, by the conformal transformation of the 
isolated airfoil to a circle, correspond to points equally 
spaced about the circle. These points, which are located by 
reference to the conformal transformation, are preferably 
chosen so that one is at the trailing edge. Experience has 
shown that 12 points at 30” intervals yield acceptable results, 
at least in the first approximation, but that 24 points at 15” 
intervals are desirable in the final approximation for best 
accuracy. If the final approximation is by the contour- 
integral method, which is rather tedious, an acceptable 
compromise is as follows : Evaluate @a and qd directly at 15 o 
intervals only in the region of the leading edge and at 30” 
intervals over the remainder of the contour, interpolating 
from a faired curve to determine @d and *‘d for the remain- 
ing 15O interval points. 

825679-49-2 

II - 
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Inasmuch as values for the 12-point and 24-point methods 
are not included in reference 13 the following table is pre- 
sented: 

: 
5 

i 
11 

0.62201 
.16667 
.04466 _-_-._.__._. 

_-.--_-____. 

n==12 
_-~ 

0.63298 

:%ii 
.06394 
.03452 
.01097 

Evaluation of a, and v,.--Integration of equation (36) of 
reference 7 along the circle boundary yields the values of the 
potential @J at points on the airfoil as follows: 

3=2ae*o[\o sin (a:+/?)-cos (cr+cp)] (10) 
n 

where 

a angle of attack 
B angle of attack for zero lift 
aeYO radius of the circle to which the airfoil transforms 
cp angular position along the circle, as determined by 

the transformation 
If the transformation has been performed as recommended 

in reference 7, the constant a will be slightly less than one- 
fourth the chord. Although the potential discontinuity (cor- 
responding to t,he circulation) may, without loss of gener- 
ality, be placed at any point on the contour, the trailing 
edge will generally be found to be the most conveuient 
location. 

The additional velocity U, is given by the derivative along 

the surface 7:; it may be determined by numerically or 
graphically differentiating @ ‘a with respect to the circle 

dq 
angle cp and multiplying this slope by ds* TllIIS, 

1 d+ 1 da,, dq 
;o-Vi dsa=V; d$- di (11) 

The value of 2 may be obtained from equations (37) and 
(38) of reference 7. Thus, 

or 

where the symbols e, 19, and \E are defined in reference 7. 

The cascade solidit,y need be taken into account only when 
the airfoil sketch to be used with figure 2 is constructed. 
For the subsequent calculations, any convenient airfoil 
chord may be used, provided only that the same chord is 
used for the external airfoils and for the central airfoil. The 
reason is as follows: The strengths of the sources, sinks, and 
vortices used to represent the external airfoils are propor- 
tional to the assumed airfoil chord; hence the additional 
potentials induced on the central airfoil will be proportional 
to the assumed chord. Since both the additional potential 
+‘a and the distance s along the contour are proportional to 

the chord, the additional velocity v==$ will be independ- 

ent of the chord. 
The chord may then conveniently be chosen as that cor- 

responding to a= 1 since a would then not appear in equations 
(10) and (12). 

The net velocity at a point on the airfoil surface is the 
algebraic sum of the velocity on the isolated airfoil and the 
induced velocity vua at that point. 

Selection of vortices for source-vortex method.-For cas- 
cades of about unit solidity, the vortex distribution for an 
airfoil of conventional design may be represented by five 
vortices spacccl on the mean line at 0.1, 0.3, 0.5, 0.7, and 
0.9 of the chord. The strengths of the vortices are tleter- 
mined by the known chordwise distribution of potential 
(PT on the upper and lower surfaces for the given approxima- 
tion. Thus, the difference in potential between the upper 
and lower surfaces at 0.2 chord is approximately the total 
vorticity between the leading edge and 0.2 chord and is 
considered to be concentrated in the vortex at 0.1 chord; 
similarly, the increase in this potential difference between 
0.2 chord and 0.4 chord yields the strength of the vortex at 
0.3 chord, and so on. The total vortex strength must satisfy 

the equation $Y=~‘. 
n 2 

Selection of sources and sinks for source-vortex method.- 
The selection of sources and sinks to represent the thickness 
distribution of airfoils is less readily systematized than is the 
selection of vortices to represent the lift distribution. For 
conventional airfoils, a reasonably satisfactory representa- 
tion is genera.lly attainable with a source at about 0.025 
chord, a second source midway between the nose and the 
position of maximum thickness, and sinks at 0.5, 0.7, and 
0.9 of the chord. The strength of each source or sink is 
taken as the difference between the “internal flow” at a 
station midway between it and the preceding source, and 
the internal flow at a station midway between it and the 
following source. This internal flow at a given station is 
estimated to be the product, of the thickness and the average 
of the upper and lower surface velocities at that station. 

Obviously, not all airfoil shapes will be best treated accord- 
ing to the pattern just described; however, little ingenuity is 
required to adjust the treatment to a particular shape. 
In any case, the total source strength must equal the total 
sink strength. 
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PROCEDURE 

A suggested step-by-step procedure is as follows: 
(1) Obtain the velocities on the airfoil at the given angle 

of attack in a uniform stream by the method of reference 7. 
This step also determines a conformal correspondence be- 
tween points (2, y) on the airfoil and angles q on a circle, 
and hence the potential distribution Cp, by equation (10). 

(2) Using the procedure described in the section entitled 
“Computational Methods,” choose sources, sinks, and vor- 
tices to represent the airfoil. 

(3) Choose points around the airfoil at which the disturb- 
ance function W, is to be found; these points are conven- 
iently chosen, by reference to tEe conformal transformation, 
to correspond to 24 (or 12) equal intervals about t(he circle. 
By use of figure 2, determine at these points the contributions 
to +‘d and *‘a of each source and vortex row. Sum separately 
the values due to sources and vortices at each point. 

(4) Form the compensating functions *c=-*\kd both for 
vortices and sources and determine the conjugate functions 
@p, by the method of reference 13. Plot +‘c against v and 
determine the slope at the trailing-edge point. The relation 

ra=-zr !@c 
( > & TE 

dctcrmines the circulation chnngrs ras and 

I’~, due to the source and vortex rows. Obtain rT by means 
of equation (1). 

(5) At each point 

(a) Sum the values of +)d, and +I,,u due to the vortex rows 

and multiply by the ratio rT . 
rl 

(b) sum the vnlucs of a.ds n1d acs due to t11c rows of 
sources and silllcs. 

(c) Find @‘r=(rT-rr) 3*-’ d7r 
(6) Sum the terms (a), (b), and (c) of step (5) to get %a; 

plot +‘a against the circle angle p, and tlctcrminc the slopes 
at the points used in the original conformal transformation 

(step (1)) at which points the stretching factor 2 will be 

known. (Another procedure is to dctcrminc the slopes at 
the 24 equally spaced points by some numerical method and 
then to determine the stretching factors at these points by 
interpolating from the values found in the conformal trans- 
formation.) The additional velocity is given by equation 
(11) ; the net velocity on the airfoil surface is the sum of the 
additional velocity and the velocity on the isolated airfoil. 
The corresponding total potential is @T=@P,++d+@p++,, 
where ap, is known from step (1). 

Using this new potential and velocity distribution, repeat 
the procedure, starting from step (2). The only modification 
is that rT (step (4)) is now obtained from equation (2), and 
in step (5a) the correction factor is rrz/rT1. The process is 
continued until the changes in lift and velocity distribution 
become small. For practical purposes, the results obtained 
in this manner may be entirely satisfactory. More accurate 

results may be obtained, *however, by application of the 
contour-integral method as described in the following three 
steps. 

(7) Place the airfoil drawing on figure 2 with the origin, 
in turn, at each of the 24 (or 12) points at which values are 
known from step (6) (considered as z-points), and read the 
chart at the same 24 points (considered as z/-points). As 
previously noted, some of the z’-points may be neglected. 
For each of the z’-points plot the values of % read at that 
point against the corresponding values of %. By planimetry 
find the area between the faired curve and the +-axis to 
determine @‘d. The value of IIr, for each point is determined 
similarly from a plot of q against the corresponding values 
of +‘r. 

(8) Form the function \k,=---\E,, determine its conjugate 

ac; the circulation change is I’,=--2?r and the 

potential *‘r= ra &- 
(9) Sum the terms @Jo, ad, and +r to get @‘a, plot against 

the circle angle ‘p, and measure the slopes. The velocities on 
the airfoil surface in cascade are obtained as described in 
step (6). Unless this velocity distribution cliffers widely 
from that obtained in the preceding approximation, it 
should not be necessary to repeat the procedure. 

The velocity distribution at another angle of attack may 
bc obtained as follows: 

(a) Solve equations (5) and (6) for en, e,, and K. A 
method of solution is indicated in the discussion following 
equation (6). The angle of zero lift and slope of the lift 
curve may then be ohtaincd from equations (7) and (8). 

(1~) Obtain the potcntin.1 distribution +r as a function of B 
(equation (4)); compn.rc with t.lic known @.T to get a corre- 
spontlcii~c bctwccn I!? ant1 position on the airfoil. Equation (9) 
then yields the velocity distribution at stream angle x,‘. 

ILLUSTRATIVE EXAMPLES 

Example I.-The velocity distribution was obtained on the 
NRCA 4412 airfoil in the configuration shown in figure 4, 
where /3=0”, a=1.032, and X0-9.7’. This example has been 
treated in reference 8. In accordance with the foregoing 
procedure, results as follows were obtained: 

(1) In figure 5 is shown the chordwise velocity distribu- 
tions of the isolated airfoil at the angle of attack of 9.7’, as 
obtained in a second approximation by the method of 
reference 7. The lift coefficient at this angle of attack is 

1.67 (that is, -$=0.X37), the angle of zero lift of the airfoil 
0 

is -4.24’, and the slope of the lift curve is 6.95 per radian. 
(2) By use of the procedure suggested in the section 

entitled “Computational Methods,” five vortices, two 
sources, and three sinks were chosen to represent the airfoil 
initially (fig. 6 and table I). 

(3) With the first location at the trailing edge, 12 locations 
on the airfoil were found corresponding to 30” intervals of 
the circle angle cp. These locations are shown in figure 6. 
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--b 

--‘j 
FIGURE 4.-XACA 4412 airfoil in lattice srrangrment. @=O”; 0=1.032: ho=9.i”. 

j i 

d6 
a 

b c d e e’ f 

FIGURE 6.-XACA 4412 airfoil showing chosen locations of sources and vortices along mean 
line and locations at which chart readings were taken. 

(The primed points correspond to 15’ intervals.) Readings 
taken at these points from figure 2 are given in table II. 
These readings, multiplied by the appropriate source and 
vortex strengths, yielded the values of @.d and 9, due to 
sources and vortices given in table III. 

(4) The conjugate functions aC were determined by the 
12-point method and are given in table IV. The slopes of 
these functions at the trailing-edge point yielded circulation 

changes -~ CrG=0.006 and $“= -0.538, from which (equa- 
0 0 

tion (1)) zrG0=0.513. This value corresponds to a first ap- 

proximation to the lift coefficient in cascade (c,= 1.03). 
(5) In table IV are given the values of aCU and %.du due to 

vortex rows multiplied by the ratio FT r, (equation (I)), the 
values of %Cs and aPds due to source rows, and the function 

(6) The additional potential @.a=@Pd+%c++r is plotted in 
figure 7. Slopes of this function were measured at points at 
which the stretching factor is known from step (1). The 
additional velocity 6, was then computed by equation (10); 
the algebraic sum of v, and the velocity in isolated flow 

-- - ~sol~~fed airfoi/ f/owi C, = t.67 

FIGVRE 5.-Velocities on SACA 4412 airfoil in isolated flow and in lattice al‘rangemcnt. p=O”: 0=1.032; ao=9.i”. 
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732 

Ckde angle, p, deg 
FIGURE ‘I.-The additional flow function iPa against circle angle for NACA 4412 airfoil in 

lattice arrengament. fl=OO; ~=1.032; ao=9.7”. 

yielded the cascade velocity (fig. 5). This velocity distribu- 
tion, together with the total potential &., formed the basis 
for a second approximation (figs. 5 and 7). Results of this 

approximation are $=0.006, $= -0.365, and c,=O.99. 
II 0 

Comparison of the velocity distribution with that of the 
first approximation shows that the process has satisfactorily 
converged. 

(7) The same 12 points around the airfoil were chosen as 
z-points; these, together with four others at 15“ intervals 
around the nose (primed points in fig. 6) were used as 
z’-points. Readings from the chart (fig. 2) are given in 
table V. These values were plotted against total potential 
@‘T (arbitrarily fixed at 0 on the lower surface at the trailing 
edge). (A sample curve is shown in fig. 8.) These curves 
were integrated by planimetry. The results-the disturb- 
ance potentials and stream functions @& and qI,-are given 
in table VI. 

(8) The function @‘c (table VI) was obtained by 24-point 
harmonic analysis and synthesis, with the use of interpolated 
values of ‘k, for the points at which it was not found ex- 
plicitly. The slope of the curve at the trailing-edge point 

-.I6 

4.0 -.8 -. 6 -.4 -.P 0 .2 .4 .6 
4v 

FIGURE S.-Typical curves for determination of 0.i and *d by contour-integral method. 
These curves we for point g on NACA 4412 airfoil in lattice arrangement. fl=O”; 0=1.032; 
ao=Q.7’=. 

yielded -$=-0.344, from which a lift coefficient cI=0.99 
0 

was obtained. 
(9) The additional potential 9,=Qd+@G+@r is plotted in 

figure 7. The velocity distribution was obtained as before 
and is plotted in figure 5. The process appears to have 
essentially converged. 

Simultaneous solution of equations (5) and (6) (table VII) 

to find the value of K at which $=$$ gave K=0.3083, 

0,=-7.57O, and 01=181.720. Eqiationi (7) and (8) then 
yielded the angle of zero lift II= -5.75’ and the slope of the 

lift curve del=3 71 d * * a0 These values may be compared with 

q= -5.94O and $!=3.71 from reference 8. 
dao 

In figure 9 is shown a plot of the potential Qr against 0 com- 
puted by equation (4). A constant has been added to make 
the potential equal to zero on the lower surface at the trailing 
edge. The known total potential in cascade @‘T and the 
corresponding values of x/c are given in table VIII. Values 
of 0, picked off the plot at points where @f is equal to the 
given values of &, are shown in the adjacent column. The 
correspondence between airfoil position and the angle e is 
thus determined. For the flow angles Xo’=1.81“ and 
Xo’=-5.940, the velocity distributions were computed by 
equation (9). In figure 10 these results are compared with the 
distributions given in reference 8. The main results of the 
calculations are summarized in table IX. 

Example II.-In an effort to obtain in the simplest possible 
manner a reference solution at large blade angle, concerning 
the accuracy of which there could be little doubt, a lattice 
was derived by a modified Joukowski transformation. This 
transformation is discussed in detail in the appendix. The 
cascade configuration is shown in figure 11 where /3=45O, 
U= 1.006, and X0=49’. This lattice will be referred to as 
the “derived airfoil lattice.” 

-.6 

-.8 

I I I I I I I III 
-180 -140 -100 -60 -20 20 

Circ/e angle, 0, dey 
100 140 I80 

FIGURE Q.-Velocity potential on unit circle in r-plane, for NACA 4412 airfoil in lattice 
msn@mumt. 8-0”; r.=1.032; u0=9.7~. 
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2 (a) (b) 
I 

0 ' .2 .4 .6 .8 f.0 R .P .4 .6 .8 f.0 
x/c X/C 

-----w 

(a) lYo=-5.94°. (b) a0=1.81’=. 
FIGURE lO.-Velocit,y distributions on NACA 4412 airfoil in lattice arrangement. ,T=O’; r=1.032. 

FIGURE Il.-Derived airfoil lattice. 8=45’; r=l.OOB; X0=49’. 

The procedure followed for the source-vortex method was 
similar to that of the first example; the calculations are 
outlined in figures 12 to 14. Because of the unusual shape 
of this profile, only one source was used and an additional 
sink was inserted at 0.3 chord (fig. 12). From a lift coeffi- 
cient cl=0.84 in isolated flow, a single approximation yielded 
a lift coefficient c,=O.54 in cascade, which was the same as 
that derived from the solution by conformal transformation. 
Since the computed changes in vortex distribution were small, 
no further approximations were made by this method. By 
reference to the velocity distribution of this approximation 
(fig. 13), the process may be seen to have essentially con- 
verged to the correct solution. 

The final contour integration resulted in a lift coefficient 
c,=O.54 and the veIocity distribution shown in figure 13. 
The main results of the calculations are summarized in 
table X. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., January 10, 1947. 

a b 
FIGURE IX-Derived airfoil showing chosen locations of sources and vortices along mean line 

and locations at which chart readings were taken. 
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.8 

FXUKE 13.-Velocities on derived airfoil lattice. ,9=45’; #=l.OOG; X0=40”. 

-.I6 
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+a 

G 
-.04 

,/7 , , , , , , , 
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4’ 
1’ ~-Contour-integral method’ 

----Source-vortex method- 
first approximation ,’ 

0 40 80 I20 f60 200 240 280 320 360 
Circle angle, lo, deg 

I~IGURE I4.--The additional flow function b. against circle angle for the derived airfoil letticc. 
@=4.Y; 0=1.006; ?.0=4LP. 
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APPENDIX 
DERIVED AIRFOIL LATTICE 

The symbols used in the appendix are defined in figure 15 
and should not be confused with similar symbols used in the 
main text of the paper. 

Consider the transformation (reference lo), 

z=-1- 
2?r ( e-@ log, Eii+e’@  log, Ez) (Al) 

The unit circle (c-plane) becomes a lattice of horizontal 
straight lines in the z-plane, spaced at unit intervals along the 

stagger line, making an angle i--/3 with the axis of reals. 

The solidity of this lattice is 

o=3 &idi%+ cos2p+ cos /3 cos p log, - sinh K + 

sin P tan-’ Jiinhrif cos2p 
> 

This relation is plotted in figure 3. 
A closed curve enclosing the points {= feWK but not en- 

closing the points {= f eK will transform by equation (Al) 
into an infinite lattice of closed shapes in the z-plane, spaced 
in the same manner as the straight-line lattice. Such a 
curve is the circle 

- 25 
=1.07ei++0.09e 3.i5 

FIGURE 15:-Flow singularities in ~-plane for dcrived airfoil lattice. 

This circle, where /3=45’ and K=O.331, becomes the lattice 
of proties that has been referred to as the derived airfoil 
lattice. A flow for which this circle is a streamline and which, 
in the z-plane, has no singularities outside the profiles, is that 
due to the system of sources, sinks, and vortices shown in 
figure 15. The velocity on the circle boundary due to this 
system is 

where 

and 

0 
6 r=A cos x,,+B sin x,+C%~ 

sin (4-Q -- 
(+--61) -Hz-cos (c$---62) 1 

B=e-*o 
J1 JZ 

HI--cos (+--6,) Hz-cos (+sz> 1 
Q= e-h J1 Jz ~_ ______ 

HI-cos (+-SJ +Hrcos (c#P-szj 1 
&=tan-’ r sin 6 

eK-r cos 6 

&=tan-’ 
-r sin 6 

eK+r cos 6 

H=; (-+A) 

ml=e+QJr2$e2K-2reK cos 6 

m2=e-*o Jr2+ezK+ 2reK cos 6 

The constant J?, which is the circulation about each profile 
(positive clockwise), is determined by the trailing-edge 
condition as 

&=- 2 
( 

$j cos X0+: sin X0 
> 

where A, B, and C are evaluated at the angle 4 which 
corresponds to the trailing edge of the profile. The angle 
of zero lift 1 with respect to the airfoil chord is obtained from 
equation (A2) by setting I’=O; thus, 

The stretching factor from the circle to the lattice is 

[$[ 2&g 

_--.-- I 
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where 

D= (cash 2K-cash 2# cos 28)2+ (sinh 2+ sin 20)s 

E= 4 cos2B coshaK (coshv - co&) + 
4 sin2/3 sinh2K (cosh2+-sin2e)- 
sin 28 sin 20 sinh 2K 

and $ and 0 are obtained from tiLo, q5, r, and 6 as 

O= tan-’ e+o sin qb+r sin 6 
e+o cos qb+r cos 6 

e+=r cos (e-s)+ Je2+o-r2 sin2 (e-s) 
The velocity at any point on the surface of a profile is 
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trary Airfoils. NACA Rep. No. 788, 1944. 
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I I 
Y 

26 
Vortex 

location 
--_____ 

(fig. 6) First sp- 
pKXimt3- 

Second ap- 
tion 

P”/9F 

TABLE II.-CHART READINGS FOR NACA 4412 AIRFOIL LATTICE, SOURCE-VORTEX METHOD 

Q for vortex row of unit strength II P for vortex row of unit strength 

Origin at 

Reading a><’ 6) 6 r rl 
m. 6) 

~Lx--“’ = r rl = LLl__‘~~ ----- 

8---.----.-.--.-..-.--------.----- “:E 0.008 0.008 0.011 0.010 0.004 0.001 -0.211 -0.184 -0.176 -0.120 -0.070 -0.026 
b ____ ____ __..--________..._---- 

-0.003 
-.- .oil‘Y .008 .Oll .OlO .003 0 -. 182 -. 168 -.1x3 --.096 -. 047 -.013 0 

c-.-.-.-.-.-..--.-.-----....------ .004 .rnM .008 :E .OQ5 -.oOl 
I:$$ 

-. 116 -. 092 -.083 -. 044 --.Oll 0 -. 010 
d ._____ _.._ _______. _________. -.- .005 :Z .006 -.cQ2 -. 007 -. 045 -. 030 -.026 -.004 0 -. 019 -.0&i 
e---------..----.-.----.-------.-. .002 .002 -. 004 -. 012 -. 013 -. 013 -.007 -.OOl 0 -. 025 -. 125 

f. ______ -.- ________ -._- ___________. E -. Cal -.002 -. 008 -. 015 -. 013 -. 011 0 -.OOl -. 001 -2% -. 057 I: g; g--------.-.----.-.-------.----.-- 0 -.003 -.002 0 -.002 -. 024 -.063 -. 120 1: ;;; 
p ____ ________._.-________-------- 
1-....---.--...-..-.------.---.--- 32 

: 
,001 

-:E 
.OlO .016 

i -22 
0 -. 012 -. 044 -.oLml 

--.007 -.006 5% ,008 .015 .023 -. 014 -. 006 -.004 .OOl -. 013 --. 
20” 

I:$ 
j-__-------.......---------..-~--- --.OZO 

1: 
;:1” -. 014 -.006 0 . 010 

:Z 
-. 058 

1: yg 1:::: 
-. 010 .OOl -. 042 

k _________ _______ ____ ________ -.- --.016 -. 010 -. 005 .002 0 -. 125 -. 050 -. 018 -2 
l_______ -__ .________._.___________ 

-.006 
-.005 0 0 .005 .004 .cm 0 -. 185 -. 161 -. 153 -. 097 -. 040 -.015 0 
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TABLE III.-CONTRIBUTIONS OF INDIVIDUAL SOURCE AND VORTEX ROWS TO THE DISTURBANCE FLOW FUNCTION 
ON THE NACA 4412 AIRFOIL IN CASCADE; FIRST APPROXIMATION, SOURCE-VORTEX METHOD 

Source location 

LI 
I 

Y  
I 

t 
I 

b j n 

Vortex location 

Point on airfoil (fig. 6) B 
I 

6 
I 

c 
I 

b rl 

Qd due to vortex rows e-d due to source rows 

0.0077 
.0066 

-0: :;; -0.0011 
-. om6 

.c036 -. OOQ5 0 

.OQll 0 -. OOOB 
0 -. 0011 -_ 0018 

.ooOl -. 0024 -.OQ52 

.OCOl -. 0027 -. 0054 
0 -. Gill9 -. 0040 

.ooo!z -. ooo6 -. 0022 

.0016 0 -. Ow4 

.OQ41 --.ooQ8 0 

.0067 -. 0021 -. 0007 

0. 0020 
.002u 
.0016 
.ooo7 

-. 0007 
-. cm5 

-: E  
.OOQ2 

-_ 0011 

-: Ei 

0.0013 
.0013 
.ooo6 

-.cOO2 
-.0015 
-. 0019 
-. 0006 

:iE 
0 

.OOQ3 

.OOQ5 

o.OaO4 
.Ow3 

-. 0001 

SE’,’ 
-. 6013 
-.0002 

.oolO 

.OQ14 

.OOlO 
0 

0001 

: 
-. OQOI 
-. 0004 
-. cMm7 
-. ooo6 
0 

.oQo8 

.cm2 

.ooos 

.0092 
0 

0.0205 
.0176 
.0112 

2% 
Fl 
0 

.0014 

.OQ56 

.0121 

.OlEO 

-0.0001 *----..---.----------.-------.------ 0.0030 
b .___ .____.___.._._______-..-.------- .0030 
e.----.---.---.-.------------.-.-.-..- .0030 
d... ..___ -_--_._-_- __._._. _.________. .0023 
e~~-..-.-~~.~.~.~...-~~~---.~..-----.- .ooo8 
f ____ _ ____._______._._.____ __._._._._. -. 6004 
g.-..-.-.......-.-..-----.-....------- 
he- ____..-. ______._-._.______-_...-.-- i 
i.~...~~~~--~-.~.~.~-~-~.~-.--~~~~.~~~. -. 6026 
j.-----.-.-.......-.-.------..._. -. 0057 
k _.____ -.- .______._.._._.____.-.-.-... -. 0042 
I______.__ _..___._.____._._.._.------. 0 

Pea due to vortex rows S,ci due to so~,rce rows 

8..~~-.-.~..~......------------------ -0.0698 -0.0221 
b ___.____ .______._. -.- ___.__._..._._. -. 0599 -. 0176 
c.~....~.~~-~..~.--~~.~-~------~~~~~~~ -. 0348 -. 0081 
d _______ -- .______... -_- ______._..___.. -. 0114 --.cOO7 
e......-...........---.-.--------.-----. -.m5 
f _____._..______._.. .______......---.- I:g$ -. 0035 
g..~~..~----.~.~.~~--.-~~~-~-.~~~.~.~. -. CO10 -. 0044 
?I ____. ---_- ____....__.___......-.----- .ooo2 -. 0021 
,...~..~.~~.~.~.~...------------------- --.0023 -.cKm2 
j-----.--.......--.-----.-.-...-------- -. 1057 -. 0018 
k ____.__. .______... ______._._._._._. -. 0386 -. 6092 
l_____.._.._ --___- ..__.___. -.-.- _______ -. 0610 -. 0178 

0 
-.0005 
-. 0030 
-. 0065 
-. 0092 
-. 0097 
-. 0083 
-. 0052 
-.Mm 
-. 0003 

0 

- 
-0.0090 
ZEE 

0 
-. M)32 
-. 0073 
-. 0081 
-. 0056 
-. 0017 

. 0001 
-. 0022 
-. 0061 

-0.0024 
-. oLx3 

0 
-_ cm18 
-. 0039 
-. 0111 
--.0116 
-. 0087 
-. Oil46 
- .OOQQ 

0 
-. 0014 

-0.0001 
0 

-. Om5 
-. 0029 
-. 0065 
-. 0091 
-. 0096 

I: g;: 
-. 0022 
-. 0003 

0 

o.oOQ4 -0.0004 
.ooo4 -.cm4 
.0004 -.OQO2 
.0003 . 0001 

0001 .0005 
0001 .0006 

0 .0092 
0 -.OQO2 

-.Om3 --.0003 
-. Oil06 0 
-. 0004 -. 0001 

0 -. 0002 

-0.0002 
-.oool 

0 
.0003 
.0006 
.0006 

0001 
-.OQo4 
--.lxm7 
-. 0004 

i 

: 
Gil01 

.0004 

.OQo7 

.0006 
0 

-.om3 
-. 0012 
-. 0008 
-. 0002 

0 

o.OOQ2 
.0002 
.KlO4 
.OOa5 
.oooz 

ii 
-. cm2 
-. 0012 
-. 0019 
-. 0016 
-. CO05 

I- 
TABLEIV.-TOTAL EFFECT OF SOURCE AND VORTEX ROWS, AND CORRESPONDING DERIVED POTENTIALS AND 

VELOCITIES, ON NACA 4412 AIRFOIL IN CASCADE; FIRST APPROXIMATION, SOURCE-VORTEX METHOD 
-0 

Values at points on figure 6 /I Values at points where $ is known 

SOUUXS 

I- T  

8 ..___. __... 0. oooo 
b _ _ _ _ _ _ _ _ .Will 
c....-...-.-- .0007 
d _ ̂ . _ _ _ _ .CiI16 
e _.__... __.. .@I21 
f _ _ _ _ _ _ _ _. 0019 
g ___... __.._ .0903 
h ._____.._.-- ya;; 
1_ _ _ _ _ _ _ _ 
j ._____...__. -.&I37 
k-v .__. -_._ -.0023 
l..m.v-.--... -:E 
a.... . . . . . . . . 

0.0014 
.0014 
.OQ15 
.0009 

-.NJO3 
-. 0020 
-. 0030 
-. 0032 
-, 0018 

.cQ97 

.0022 

.0922 

.0014 

Vortices upper surface 

O: Ei 
.0138 
.0017 

-.I3987 
-. 0167 
-. 0177 
-. 0142 
-. 0064 

.OQ46 

.0151 

.0219 
,024O 

T  
- 

-0.1034 

E: it:; 
-. 0168 
-. 0146 
-. 0313 
-. 0347 
-. 0243 
-. 0139 
-. 0205 

=: Ei 
-. 1034 

-- T 
o.OQ13 0.0067 

.0414 .0066 

.0513 0050 

.0314 .0017 

.0040 --.0034 
-. 0050 -. 0057 

.cQ37 -. 0014 

.0044 ,002Q 
--.0098 .0012 
-. 0356 -.OQ30 
-. 0505 -. Oil46 
-. 03i2 .0015 

.Oa3 .0067 

0.0049 -0.0270 0.0033 
.om5 -. 0540 -_ 0015 
.0347 -_ 0810 -. 0310 
.0206 -. 1080 -_ 0848 
.oOil4 -. 1350 -, 1436 

-. 0065 -_ 1620 -_ 1872 
.0014 -. 1891 -. 2084 
.0045 -_ 2161 -_ 2290 

-. 0053 -. 2431 -. 2566 
-. 0236 -_ 2701 -. 2884 
-. 0338 -. 2971 -_ 3136 
-. 0218 -_ 3241 -. 3218 

.oQ49 -. 3511 -. 3208 

0.6056 
.5355 
.3592 

-: Ei 
-. 1126 
-. 0459 

.1642 

.4802 

.8365 
1.1558 
1.3716 
1.4451 

0.6089 
.5340 
.3282 
.0581 

-. 1801 
-. 2998 
-. 2543 
-. 0648 

: i%f 
.8422 

1.0498 
1.1243 

’ 0.0125. -0.0356 
.05Oil -. 0427 
:i%i -. -. 0542 0456 

:iE -. -_ 0606 0506 
.8MM -_ 0226 

9000 -. 0078 

7.153 -0.254 2.287 2.033 
4.541 -. 194 2.002 1.808 
3. 500 -. 160 1.853 1.693 
2.733 -. 148 1.719 1.571 
2.218 -. 140 1.523 1.383 
2.133 -. 108 1.345 1.237 
2.498 -. 057 1.178 1.121 
3.226 -. 025 l.Oi8 1.053 

Lower surface 

0.0125 -0.0451 
.054lo -. 0651 

1000 -. 0847 
.2caJ -. 102i 
.4Otlo -. 11% 

: it% -. -. 1008 0621 
.9OQO -. 0328 

8.263 -0.372 0.458 0.086 
4.603 -. 300 -. 314 -. 614 
3.304 -. 280 -. 541 -. 821 
2.413 -. 248 -. 676 -. 924 
1.914 -. 221 -. 754 -. 975 
1.903 -. 192 -. 796 -. 988 
2.335 -. 145 -. 834 -. QiQ 
3.080 -. 101 -. 845 -. 946 

- I I I 
1 Velocities along the surface are considered positive when directed from the trailing edge to the lending edge on the lower surface. and from the leading edge to the trailing edge on the upper 
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TABLE V.-CHART READINGS FOR INTEGRATION WITH RESPECT TO a)~; NACA 4412 AIRFOIL IN CASCADE; 

CONTOUR-INTEGRAL METHOD 

-----7- a b c a e f ?L! h i J k 1 
___-______ P-----e 

1 1.0318 
*- 0.5400 0.3106 0.0401 -0.2022 -0.3230 -0.2911 -0.1064 0.1733 0.4986 0.7954 l.OQ60 

f 0.5875 

0 
- - - - 

- 

0.029 
.0275 
.0215 
,010 

-.006 
-. 012 
-. 014 
-. 014 
-. 010 
-.06b 
-. 0025 
-. 0005 

0 
0 

,908 
,021 

- 

- 
- 

- 

- 

- 
- 

- 

i 
0 

-.003 
-.cm 
-. 010 

I:-$$ 

:t% 
,022 
,027 
.028b 
.OM 
.!I065 

0 

-0.001 

i 

Si5 
--.007 
-.005 

0 

:E5 
.019 
,022 
.022 
.0105 

-. 0015 
-.003 

---E 
--.0015 

0 

I: gb 
-. 001 

,002 
.006b 
.Oll 

: %i” 

2% 
-. 012 
-. 9085 

-Y-o: gg 
--.066 
-. Wlb 

E 

:F25 
.6045 
. 0056 
.ccJo 
,061 

-.006 

1: :s5 
-. 015 

O:Eb 
.OlOK 

-. 0035 

I: gj5 

Z:$j 
-. 018 

-: “2” 
-. 0016 

.OOOb 
0 

.0035 

.0155 

0.008 
.0065 

-:E% 
-.023 
-.O% 
-. 025 
-. 0215 

1::: 
.OcQ5 

:tiP 
.6035 

0 
.004 

0.001 
0 

::g 
-. 016 
-. 018 
-. 014 
--.OlO 

-:E 
.015 
.0195 
.OZlb 
.016 
.904 

0 

-0.008 
-.mtl o:% 
1::; .9605 ;z45 

0 
: 

:% 

0 0” 
0 0 

-. 0035 --.063 
--.oQs 
-. 0166 q :K 
-.027 -. 0185 
-. 025 -. 014 
-. 017 --.0X 

0.020 
.021 
.0195 
.0145 
.0055 

0 
--.0625 
-. 0035 
-.602 
-.ooo5 

0 
,001 
.003 
.066 

-.Om5 
-. 016 

8------------.-------------------- 
b- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0” 
c---.-.--..--.------.------------- -.OOOb 
a _______._._________.___ _________ -.0045 
e.---..--.-.---------------------- -.OlO 
e’-----..-----.-.-..---------.---- -. 011 
f ____.-.--.______.-.-________-...- -.009 
f’_..- ----. -. __. ___ -- - _ _ _ _ _ _ - _ -. -- - 
g ..___________ -__- __._ _ ___.__ ____ -2% 
g’----------.-----------.--------- ,015 
h ..___._._. ._____._.____ ________ ,024 
p’. _._-_..- ____________________.. ,028 
1...---.-.--.-.-...--.-------.-.-. .0295 
j-.--.-..-------._..-.-------...-- .022 
k ______________ .__. ______ ---.--_ 
l_____________ -_--_--- ____ -..-.-__I :E 

- 
- 

- 

-0.602 
0 

-. 0126 
-.062 
-. 131 
-. 159 
-. 131 
-. 191 
-. 189 
-. 181 
-. 160 
-. 136 
-. 106 
-. 047 
-. 0685 

0 

i 
-7 

8..-.-.-.--....-.-.-----.-----.--. 0 -0.602 
b . ..____.____________---.-..----.- -.002 0 
c....-.-.........-.-.-~-.-.---.-.- -.023 -. 012 
a ..___..._.__._.____.----..---.-.- -.081 --.060 
e..........-......-..--.-.-.-----. -. 153 -. 128 
e’......................---.-.-... -. 184 -. 157 
f _ _ _ _ _ _. _. _. _ _ _ _ _. -.204 -. 180 
f’.___._ _._..___......_.___......- --.214 -. 189 
g _.._._..._._____..._.-.----..... -. 212 -. 186 
g’.-----..--.-....-...----........ -.205 -. 176 
h . . ..___.___ _... _._______....._ -. 184 -. 158 
h’______._._.__._._.__ _ _._.._..._. -.lbS -. 133 
1..........-....-.-...~--.... -. 127 -. 101 
j ___._..... .._____.._ _ . .._______. -. 062 -. 044 
k .._....... ._____...__.._______-. -.018 -. cHI75 
l____... .._._.______________--.-- -.062 0 

-0.154 
-. 132 
-.073 
-. 018 
0 

-.M)3 
--.007 
-. 0085 
--.oos 
-.OQ5 

0 
.0035 
.0025 

-_ 0225 
-. 081 
-. 131 

-0.205 -. 178 
-. 111 
-. 042 
-.006 -. ooo5 
0” 
0 

.0015 

.@a15 
--.002 
-. 011 
-. 054 
-. 123 
-.079 

-0.217 -. 187 
-_ 1M 
--.048 -_ 0075 -. 0015 

0” 
i 

-. 0015 
-.W6 -. 017 -. 063 -. 130 
-. 188 

-0.066 
-. 045 
-. 0085 

.0025 
--.023 
-. 040 
-. 0.53 
-. 064 
-.063 
-_ 056 
--.044 
-_ 0295 
-. 015 

0 
-. 016 
-. 0476 

-0.016 
-. 0075 

,001 
-.023 
-. 077 
-. 100 
-. 119 
-. 129 
-. 128 
-. 120 
-. 103 
--.082 
-. 058 
-. 016 
0 

-.009 

1 Upper surface at trailing edge. 
2 Lower surface at trailing sage. 

TABLE VI.-DERIVED POTENTIALS AND VELOCITIES ON NACA 4412 AIRFOIL IN CASCADE; CONTOUR-INTEGRAL 
METHOD 

Values at points on figure 6 Values where dT is known 
ds - 

-- 

- 

2 
CVO 

0.5717 
,302 

%E 
-: 0687 
-. 1237 
-. 1465 
-. 1329 
-. 0818 

.0060 

: E 
.4425 
.7982 

1.1187 
1.3366 
1.4117 

-0.0144 
-. 0432 
-.0720 
-. 1008 
-. 1296 
-. 1440 
-. 1584 
-. 1728 
-. 1872 
-. 2017 -. 2161 
-_ 7.305 
-. 7.449 
-. 2737 

1: ;gg 
-. 3601 

9. 
Fi& 

O: %E 
-. 0174 -. 0718 
-. 1335 
-. 1607 -. 1815 
-. 1969 
-. 2093 
-. 2189 

I: g;; 
-. 2642 
-.299+ -. 3233 
-. 3306 
-. 3299 

-0: g: 
-. 0314 
-. 0098 
-. 0049 
-. 0071 
-. 0114 
-. 0130 
- .0164 
-. 0151 
-. 0128 
-. 0118 

-: E; 
-. 0362 -. 0586 
--.0687 

0. cm21 
.0271 
.0382 
.0257 
.owo 

cm7 
-. 6012 
-_ 0031 
-. 6035 
-. 6015 
-. 0043 
-.ooix 
-. 0122 
-. 0261 
-. 0323 
-. 0224 

.@a21 

Upper surface 

7.153 -0.288 
4.541 -. 225 

i:% -. -. 184 182 
2.218 -. 144 
2.133 -.096 
2.498 -. 047 
3.226 -. 014 

0.5875 
.b400 ~ 
.3106 
.0401 0.0125 

-. 2022 .OiYN 

-. 2844 --.3280 :E?l 
-.3298 .4OOil 

-. 2911 -. 2129 :E 
-. 1064 .9ooo 

.O%O 

::i: 
.79b4 

l.oolx 

1.0818 “::E 

:i% 
.4OQO 

:Ei 
.9cm 

- 

- 

- 

- 
-. 0403 
-. 0486 
-. 0525 
-. 0667 
-. 0656 
-. 0452 
-. 0189 
-. 0042 

-0.0598 
-. 0792 
-. 0938 
-. 1078 

z: :;I 
-. 0564 
-. 0333 

- 
1 Velocities along the surface m considered positive when directed from the trailing edge to the leading edge on the lower surface, and from the leading sage to the trailing edge on the 

upper surface. 
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TABLE VII.-COMPUTATION OF MAPPING FUNCTION CONSTANTS FOR NACA 4412 AIRFOIL LATTICE 

K &a (&I S T u A% 
cv, 

0.3 _________.._______.-------- _ _.-- -7.37 181.62 1.1307 0.0157 1.4343 
0.4.. ____________ ________....-_-__ -9.81 182.38 .9585 .0152 O: %i 1.2632 
0.32 ._._.__.________._...---.--.--- -7.85 181.83 1.0920 .0156 ;:ii 1.3962 
0.311--------..------------.------- -7.63 181.73 1.1088 .0157 : 1.4127 
0.305...-.-.-..--.--------.-.------ -7.57 181.72 1.1147 .0157 .2882 1.4186 
0.309 _.___._.. _ _____..-..-----___ -- -7.59 181.73 1.1128 .0157 .2882 1.4167 

0.3083------.--..---.--------.----- -7.57 181.72 1.1144 .0157 .2882 1.4183( -$) 

s=e log, 
[ 

(CC& IC-cos 9,) (cash K+cos 9”) 
(cash K+cos 0r) (Gosh K-cos 8.) 

I T=G tan-, [ (s!n @,--sin &) sinh X] 
smh2K+sin 8. sin 8~ 

u=L tan-1 (tan en--tan sr) tanh K 
2sc T’o IT--- tanh3K+tan 8. tan et 1 

TABLE VIII.-RELATION BETWEEN CIRCLE ANGLE 0 ({-PLANE) AND LOCATION ON NACA 4412 AIRFOIL IN CASCADE 

Upper surface I Lower surface 

Point 

g-.----.----------.--------- -0.2911 0.006 
h-F-- . ..__.__.___._.__. .._. -. 1064 .09ll 
i..-------.-.....-.-------.-. .I783 ,270 
j..... ._..___ -.- ._._____ .___ .4986 
k ..___. --- ____......__._..__ .7954 
I..._....._ -.- .____.._.. _... 1.0060 

k&) 
1.4 

17.0 
45. 7 
98.8 

145.2 
168.2 

Point 

a........-.--.....---.-... 0.5875 1.000 
b _ _ _ _ _ _ _ _ _ _ .5400 ,920 
c...-.-.-..--.-.--..---.-. .3106 ,707 
d _ _ _ _ _ _ _ _ _ _ _ . _ _ .0401 ,435 
e..-.......-.--.-..--.-... -. 2022 
f........---..-.--...-..-. -. 3280 :E 

-178.3 
-167.3 
-135.8 

-82.9 
-35.1 
-11.8 

TABLE IX.-CONSTANTS OF NACA 4412 AIRFOIL LATTICE 

Method Ar.lCT’o AT& Tr, Ar ,,/c TG Cl K & dcrldao (d&J 
--. - 

Source-vortex method; first approximation ._...__...__..._..__-..... 0.006 -0.538 1.03 
Source-vortex method; second approximation.. ._..._._._._._...... .006 -.365 

-0: gg 
.99 . . ..- --- . .._.. . . . ..-.-_.__.. .-- .__.. _......_.._.._ -... 

Contour-integral method .______. _.._._.____..__ __._.... ..- ___. . . ._ __- __._...__ ._.____... -.346 .99 0.3083 181.73 3.71 -5.75 
Mcthodofreference8..-------.- .__._._.__ ._._._.._._.____ ---- __.. ..__ --_- ___._. ___.._ ---_--__ . ..__ _____ --- 1.00 .3109 181.79 3.71 -5.94 

TABLE X.-CONSTANTS OF DERIVED AIRFOIL LATTICE 

Method Al-./C vo AI’& 1’0 Ar./cT’o CI K 
Cd”s,, 

dcddao &I 
-___ ~- 

Source-vortex method; first approximation _......__._._._...._-..-. -0.083 -0.101 -0.148 0.54 -------------- ---------_.-__ ._...._..__ -_- . ..___.....__. 
Contour-integralmethod..~..~.-.-~-.~.~-~-~~~.-.~....~...-~.....~..........~.~. .._.......-._. -.152 0.2637 193.50 5.11 -2.03 
Conformal transformation . .._ --.-__ __.._. __.._.._.._._ ._ ..-.-_. __. .__. ._ ._..___. ..- ._____. 1:: .2635 193.46 5.11 -2.11 



Positive directions of axef~ and angles (forces and moments) are shown by a~owa 

Axis Moment about axis Angle Velooitiee 
, 

Linear - 
SYm- symbol Designation bol Positive 

direction 
Dy/%;” ‘g!$- &$%cig Angular 

axis) 
- 

Rolling _______ L Y-2 Roll _________ $I ¶b P 
Pitching.--- M z-x Pitch--.- 0 v ,!I 
Yawing .-___- N ..X--bY Yaw .._______ I/J W r . .- 

-: Absolute coefficients of moment 
c,=L C,=M c -N 

Angle of set of control surface (relative to neutral 
,: / position), 6. (Indicate surface by proper subscript.) ’ 
,; pbS . 

=- .i (roams 
PS (pitchmg) 

“-pbS 
b=wlng) 

i&ii& i 
_ 4. PBOPELLER SYMBOLS 

_ !‘- D Diameter P . .Poy-er, absolute coefficient C - -- P 

i/D 
Geometric pitch p-pn3As 
Pitch ratio 

V’ Inflow, velocity G Speed-power coefhcient = 6 p 
d 

pn2 

V, Slipstream velocity q Efficiency, 
T Thrust, absolute coefficient Or=----& n Revolutions per second, rps 

. 
Q Torque, absolute coefficient Cc=---$& * Eff ectlve hehx angle = tan-’ 

6. NUMERICAL RELATIONS 

1 hp=76.04 kg-m/s=550 ft-lb/se0 
1 metric horsepower=0.9863 hp 
1 mph=0.4470 mps 
1 mps=2.2369 mph 

_. .Y.., ,I. 

1 lb=0.4536 kg 
1 kg=2.2046 lb 
1 mi=1,609.35 m=5,280 fb 
1 m=3.2808 ft _ ,/ -,. ..I ... ‘. 


